

Proportion (Part 3)

► Introductory application

A market sells items. Sometimes the store make discount (sold) on price and sometimes make a raise. This mean that the price of the items change.

Example 1:

In black Friday, the store make a discount on prices. A shirt cost \$25 before, after the discount the price becomes \$20.

Notice that the price decreases \$5.

This \$5 is decreased from the original price \$25.

\$25
$$\longrightarrow$$
 100%
\$5 \longrightarrow x%

$$x = \frac{5 \times 100}{25} = 20\%$$
 The price decreased 20%

► Introductory application

Example 2:

When summer comes, the store make a raise on prices of shirts. A shirt cost \$25 before, after the raise the price becomes \$30.

Notice that the price increases \$5.

This \$5 is increased on the original price \$25.

$$\begin{array}{c} \$25 \longrightarrow 100\% \\ \$5 \longrightarrow x\% \\ x = \frac{5 \times 100}{25} = 20\% \quad \text{The price increased 20\%} \end{array}$$

► Introductory application

In the two cases we have:

- Original price
- New price
- Percentage change

What are the relations between these 3?

► Raise in price

An item costs 25\$. It raised 20%. What is its new price?

To find the new price, we need to find the amount of 20%.

20% of 25 is
$$\frac{20}{100} \times 25 = 5$$

So the new price is 25 + 5 = 30.

Suppose that the original price is x, the new price is y and the percentage of change is a%.

- The amount of the percentage is $\frac{a}{100}$ of x i.e. $\frac{a}{100} \times x$
- The new price is $y = x + \frac{a}{100}x$ $= x \left(1 + \frac{a}{100}\right)$ $= \left(1 + \frac{a}{100}\right)x$

$$y = \left(1 + \frac{a}{100}\right)x$$

► Discount in price

An item costs 25\$. It decreased 20%. What is its new price?

To find the new price, we need to find the amount of 20%.

20% of 25 is
$$\frac{20}{100} \times 25 = 5$$

So the new price is 25 - 5 = 20.

Suppose that the original price is x, the new price is y and the percentage of change is a%.

- The amount of the percentage is $\frac{a}{100}$ of x i.e. $\frac{a}{100} \times x$
- The new price is $y = x \frac{a}{100}x$ $= x \left(1 \frac{a}{100}\right)$ $= \left(1 \frac{a}{100}\right)x$

$$y = \left(1 - \frac{a}{100}\right)x$$

► Percentage of change

The percentage of change:

$$a = \frac{original\ price - new\ price}{original\ price} \times 100$$

If a < 0, there is raise in price.

If a > 0, there is discount on price.

Example:

A pant costs 30\$. After reducing its price, it becomes 27\$ $a = \frac{30-27}{30} \times 100 = 10\%$ so the percentage of change is 10%

A pant costs 30\$. After raising its price it becomes 36\$. $a = \frac{30-36}{30} \times 100 = -20\%$ so the percentage of change is 20%.

The price of an article is \$150. its price increases by 9% what is the new price?

$$y = \left(1 + \frac{a}{100}\right)x$$

$$= \left(1 + \frac{9}{100}\right) \times 150$$

$$= 1.09 \times 150 = 163.5$$

The new price is \$163.5

The price of an object after a discount of 10% is \$550. what is its original price?

$$y = \left(1 - \frac{a}{100}\right)x$$

$$550 = \left(1 - \frac{12}{100}\right)x$$

$$550 = 0.88x$$

$$x = \frac{550}{0.88} = 625$$
The original price is \$625.

The price of an object decreases by 15% and then increases by 20%. If its original price was 75\$, what is its new price?

After decrease of 15%:

Original price is 75\$

$$y = \left(1 - \frac{15}{100}\right)x = 0.85 \times 75 = 63.75$$
\$

After an increase of 20%:

Original price is 63.75\$

$$z = \left(1 + \frac{20}{100}\right)y = 1.2 \times 63.75 = 76.5$$
\$

Or

x is the original price and y its new price after the two changes;

$$y = \left(1 - \frac{15}{100}\right) \left(1 + \frac{20}{100}\right) x$$
$$= 0.85 \times 1.2 \times 75 = 76.5$$

The price of an article was 75\$, it becomes 125\$. What is the percentage of change?

Original price: 75\$

New price: 125\$

Percentage of change
$$a = \frac{original \ price-new \ price}{original \ price} \times 100$$

$$= \frac{75-125}{75} \times 100 = -66.67\%$$

So there is increase in price by approximately 66.67%

The price of an article increased by 15% then decreased by 15%. What is the change that is happened on the price?

Original price: x

$$y = \left(1 + \frac{15}{100}\right) \left(1 - \frac{15}{100}\right) x$$
$$= 0.9775x$$

0.9775 < 1 so there is decrease in price

$$1 - \frac{a}{100} = 0.9775$$

$$1 - 0.9775 = \frac{a}{100}$$

$$1 - 0.9775 = \frac{a}{100}$$

$$0.0225 = \frac{a}{100} \text{ so } a = 2.25\%$$

